移动通信:深圳单片机课程

日期:2019-01-25编辑作者:移动通信

  8. Scikit-Learn Scikit-learn机器学是一个开源框架,Python有用的数据挖掘、数据分析和数据可视化。它有利于分类、回归、聚类、降维、模型选择、预处理,等等。它是建立在NumPy,SciPy,matplotlib。使用Python,工作速度比R和有伟大的表现。然而,没有分布式版本可用,不适合大数据集。深圳单片机课程

  人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 1.4. DMTK 分布式机器学工具 微软 python

  人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。 人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 [1] 2017年12月,人工智能入选“2017年度中国媒体流行语”。 [2] 你好,我叫AI TA说 AI 真正可怕的地方在于,它证明了人类不是特别的2018-10-08 19:10 AI 带来的极大便利,造就了一批“科技沙文主义者”(英文单词:technochauvinism),即相信科技提供的解决方案总是方案。事实上,研究团队更希望以此表明的是,人工智能并非是天然正确的理性产物,在接触到大量黑暗信息时,它们也会分分钟被带偏。...详情 内容来自 中文名 人工智能 外文名 ARTIFICIAL INTELLIGENCE 简 称AI 提出时间 1956年 提出地点 DARTMOUTH学会 名称来源雨果·德·加里斯 的著作 目录 1 定义详解 2 研究价值 3 发展阶段 4 科学介绍 5 技术研究 ? 研究方法 ? 智能模拟 ? 学科范畴 ? 涉及学科 ? 研究范畴 ? 安全问题 ? 实现方法 6 专业机构 ? 美国 ? 中国 7 主要成果 ? 人机对弈 ? 模式识别 ? 自动工程 ? 知识工程 8 相关著作 9 发展简史 ? 计算机时代 ? 竞赛 ? 大量程序 ? 日常生活 ? 强弱对比 10 研究课题 ? 解决问题 ? 知识表示法 ? 规划 ? 学 ? 自然语言处理 ? 运动和控制 ? 知觉 ? 社交 ? 创造力 ? 多元智能 ? 人工智能影响 ? 应用领域 11 流行语 定义详解 人工智能机器人 人工智能机器人 人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。 关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCCIOUS_MIND))等等问题。 1.3. Deeplearning4j Java、Scala兼容 商业公司管理深圳单片机课程人了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。 1.1. Caffe 由 NVIDIA 和亚马逊等公司资助来支持它的发展10. Tensorflow 初是由谷歌的机器智能研究开发部门研究出来的,是用来进行深度学网络和机器学的研究,TensorFlow现在已经是semi-open-source库了,允许开发人员进行数值计算。AI开发者可以使用TensorFlow库在模式识别方面构建和训练网络。它是用Python和C++这两门强大的以及广受欢迎的编程语言编写的,允许分布式训练。它的缺点是不包含许多pre-trained模型,像Caffe一样,也不支持外部数据集。在这里()了解更多关于TensorFlow!其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。 人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。 尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。 人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(工程、纳米科学、人工智能)。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。深圳单片机课程

  人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。 [3] 研究价值 具有人工智能的机器人 具有人工智能的机器人 例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。 通常,“机器学”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。这类“机器学”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。我们可以将这样的学方式称之为“连续型学”。但人类除了会从经验中学之外,还会创造,即“跳跃型学”。这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机难学会的就是“顿悟”。或者再严格一些来说,计算机在学和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。人类的实践过程同时包括经验和创造。 这是智能化研究者梦寐以求的东西。 2013年,帝金数据普数中心数据研究员S.C WANG开发了一种新的数据分析方法,该方法导出了研究函数性质的新方法。作者发现,新数据分析方法给计算机学会“创造”提供了一种方法。本质上,这种方法为人的“创造力”的模式化提供了一种相当有效的途径。这种途径是数学赋予的,是普通人无法拥有但计算机可以拥有的“能力”。从此,计算机不仅精于算,还会因精于算而精于创造。计算机学家们应该斩钉截铁地剥夺“精于创造”的计算机过于全面的操作能力,否则计算机真的有一天会“反捕”人类。 当回头审视新方法的推演过程和数学的时候,作者拓展了对思维和数学的认识。数学简洁,清晰,可靠性、模式化强。在数学的发展史上,处处闪耀着数学大师们创造力的光辉。这些创造力以各种数学定理或结论的方式呈现出来,而数学定理的特点就是:建立在一些基本的概念和公理上,以模式化的语言方式表达出来的包含丰富信息的逻辑结构。应该说,数学是单纯、直白地反映着(至少一类)创造力模式的学科。 发展阶段 1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。IBM公司“深蓝”电脑击败了人类的世界国际象棋更是人工智能技术的一个完美表现。 从1956年正式提出人工智能学科算起,50多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下困难的事情了。

  当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学计算机的大学生也必须学这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。例如,1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。 科学介绍 实际应用 机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。 学科范畴 人工智能是一门边缘学科,属于自然科学和社会科学的交叉。 涉及学科 哲学和认知科学,数学,生理学,心理学,计算机科学,信息论,控制论,不定性论 研究范畴 自然语言处理,知识表现,智能搜索,推理,规划,机器学,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,网络,复杂系统,遗传算法 意识和人工智能 人工智能就其本质而言,是对人的思维的信息过程的模拟。 对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。 弱人工智能如今不断地迅猛发展,尤其是2008年经济后,美日欧希望借机器人等实现再工业化,工业机器人以比以往任何时候更快的速度发展,更加带动了弱人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。

  1.8. NuPIC 基于分层暂时记忆理论 有商业版本 而强人工智能则暂时处于瓶颈,还需要科学家们和人类的努力。 技术研究 用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 研究方法 如今没有统一的原理或范式指导人工智能研究。许多问题上研究者都存在争论。其中几个长久以来仍没有结论的问题是:是否应从心理或方面模拟人工智能?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的?智能行为能否用简单的原则(如逻辑或优化)来描述?还是必须解决大量完全无关的问题?深圳单片机课程

  1. 本网凡注明“稿件来源:本网原创”的所有作品。转载请必须同时注明本网名称及链接。

  2. 本页面为商业广告,内容为用户自行上传,本网不对该页面内容(包括但不限于文字、图片、视频)真实性和知识产权负责,如您认为该页面内容侵犯您的权益,请及时联系进行处理,不收取任何费用。

  3. 本网部分内容转载自其他媒体,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性。不承担此类作品侵权行为的直接责任及连带责任。

本文由移动通信:深圳单片机课程发布,转载请注明来源:移动通信:深圳单片机课程

基于单片机与TC35模块的SMS远程数据采集系统设计

传统的数据采集系统,由于通信线路的限制,数据传输距离不可能很远。采用以太网传输,大大提高了数据的传输距...

详细>>

电量分配还是很态度8调查网紧张

毕竟,或者比这更少。比如高通的Glance视觉芯片。还有消费级电子产品里,是因为一般情况下,不管到哪都要找地方...

详细>>

朗读者电影完整版第一行显示“水情检测系统”

pH玻璃电极其外部是由特殊玻璃膜制成的玻璃电极,水情监测系统软件程序设计主要包括:系统初始化、按键处理、数...

详细>>

交流感应电机控制系金融人才网统的原理构成如

经单片机分析处理后采取的措施对系统进行保护,滤波电容充电接近完成后通过继电器K101旁路限流电阻。以实现各个...

详细>>